Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404763, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588210

RESUMO

The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon products has been widely recognized for Cu-based catalysts. However, the structural changes in Cu-based catalysts during the eCO2RR pose challenges to achieving an in-depth understanding of the structure-activity relationship, thereby limiting catalyst development. Herein, we employ constant-potential density functional theory calculations to investigate the sintering process of Cu single atoms of Cu-N-C single-atom catalysts into clusters under eCO2RR conditions. Systematic constant-potential ab initio molecular dynamics simulations revealed that the leaching of Cu-(CO)x moieties and subsequent agglomeration into clusters can be facilitated by synergistic adsorption of H and eCO2RR intermediates (e.g., CO). Increasing the Cu2+ concentration or the applied potential can efficiently suppress Cu sintering. Both microkinetic simulations and experimental results further confirm that sintered Cu clusters play a crucial role in generating C2 products. These findings provide significant insights into the dynamic evolution of Cu-based catalysts and the origin of their activity toward C2 products during the eCO2RR.

2.
Adv Mater ; : e2312341, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567889

RESUMO

Noncentrosymmetric transition metal dichalcogenide (TMD) monolayers offer a fertile platform for exploring unconventional Ising superconductivity (SC) and charge density waves (CDWs). However, the vulnerability of isolated monolayers to structural disorder and environmental oxidation often degrade their electronic coherence. Herein, an alternative approach is reported for fabricating stable and intrinsic monolayers of 1H-TaS2 sandwiched between SnS blocks in a (SnS)1.15TaS2 van der Waals (vdW) superlattice. The SnS block layers not only decouple individual 1H-TaS2 sublayers to endow them with monolayer-like electronic characteristics, but also protect the 1H-TaS2 layers from electronic degradation. The results reveal the characteristic 3 × 3 CDW order in 1H-TaS2 sublayers associated with electronic rearrangement in the low-lying sulfur p band, which uncovers a previously undiscovered CDW mechanism rather than the conventional Fermi surface-related framework. Additionally, the (SnS)1.15TaS2 superlattice exhibits a strongly enhanced Ising-like SC with a layer-independent Tc of ≈3.0 K, comparable to that of the isolated monolayer 1H-TaS2 sample, presumably attributed to their monolayer-like characteristics and retained Fermi states. These results provide new insights into the long-debated CDW order and enhanced SC of monolayer 1H-TaS2, establishing bulk vdW superlattices as promising platforms for investigating exotic collective quantum phases in the 2D limit.

3.
Fish Shellfish Immunol ; : 109568, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636741

RESUMO

Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20% fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20% FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1ß, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.

4.
Sci Rep ; 14(1): 9085, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643319

RESUMO

To address the noise issue in fiber optic monitoring signals in frozen soil areas, this study employs wavelet denoising techniques to process the fiber optic signals. Since existing parameter choices for wavelets are typically based on conventional environments, selecting suitable parameters for frozen soil regions becomes crucial. In this work, an index library is constructed based on commonly used wavelet basis functions in civil engineering. An optimal wavelet basis function is objectively selected through specific criteria. Considering the characteristic of small root mean square error in fiber optic signals in frozen soil areas, a multi-index fusion approach is applied to determine the optimal decomposition level. Field observations validate that denoised signals, with parameters set appropriately, can more accurately identify locations where settlement occurs.

5.
Heliyon ; 10(5): e27153, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455567

RESUMO

Hepatocellular carcinoma (HCC) is associated with high morbidity and mortality globally. tRNA-derived small RNAs (tsRNAs) have emerged as potential targets for cancer treatment. However, the specific impact of tsRNAs on HCC remains undiscovered. In this study, we aimed to investigate the biological significance of tsRNAs in HCC. First, we screened the differentially expressed tsRNAs in HCC tissues and normal tissues adjacent to the tumor (NAT) using high-throughput sequencing and the results showed that tRF-39-8HM2OSRNLNKSEKH9 was more highly expressed in HCC tissues than NATs. Agarose gel electrophoresis (AGE), nuclear-cytoplasmic separation assays and fluorescence in situ hybridization (FISH) were employed to assess the characterization of tRF-39-8HM2OSRNLNKSEKH9. The relationship between the expression of tRF-39-8HM2OSRNLNKSEKH9 and clinicopathological parameters was evaluated and we found that it was positively associated with tumor size. The cell counting kit-8 (CCK8) assay, colony formation assay and EdU staining assay were employed to investigate the role of tRF-39-8HM2OSRNLNKSEKH9 in the proliferation of HCC cells. Additionally, transwell assays demonstrated that overexpression of tRF-39-8HM2OSRNLNKSEKH9 could accelerate cell migration capability. Taken together, tRF-39-8HM2OSRNLNKSEKH9 was highly expressed in HCC cells, serum and tissues, and it may play an oncogenic role in HCC cells through interacting with downstream mRNA targets.

6.
Foods ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540856

RESUMO

The differences in chemical components, nutritional value, volatile organic compounds, antioxidant activity and α-glucosidase inhibiting capacity in vitro in coconut waters with different maturities (8, 10, and 12 months after pollination and germination height below 10 cm were named CW-8, CW-10, CW-2, and MCW, respectively) from the tall coconut variety were compared and analyzed. Results showed that as the maturity increased, the ash and reducing sugar in coconut water gradually decreased, while the protein content and fatty acids continued to increase. Potassium, phosphorus, and sodium in four coconut waters showed a trend of first increasing and then decreasing, and CW-12 had the highest content of 2133.85 mg/kg, 239.74 mg/kg, and 310.75 mg/kg, respectively. The volatile organic compounds (VOCs) present in higher amounts are alcohols and esters in coconut waters, among which 2-methylbutyl acetate, ethyl acetate monomer, and 2-methyl-1-propanol dimer were the characteristic volatile substances that distinguish MCW from the other three coconut waters. MCW has the best DPPH-scavenging and ferrous-ion-chelating ability (87.39% and 7.65%), while CW-8 had the highest hydroxyl and ABTS radicals scavenging rate (97.31% and 83.48%) and α-glucosidase inhibitory rate (81.36%). These results can provide support for the differential and high-value utilization of coconut water with different maturities.

7.
Chin J Nat Med ; 22(3): 273-279, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553194

RESUMO

Hyparillums A (1) and B (2), two previously unidentified polycyclic polyprenylated acylphloroglucinols (PPAPs) with intricate architectures, were isolated from Hypericum patulum Thunb. Hyparillum A was the first PPAP with eight-carbon rings based on an unprecedented 6/6/5/6/6/5/6/4 octocyclic system featuring a rare heptacyclo[10.8.1.11,10.03,8.08,21.012,19.014,17]docosane core. In contrast, hyparillum B featured a novel heptacyclic architecture (6/6/5/6/6/5/5) based on a hexacyclo[9.6.1.11,9.03,7.07,18.011,16]nonadecane motif. Furthermore, hyparillums A and B demonstrated promising inhibitory effects on the proliferation of murine splenocytes stimulated by anti-CD3/anti-CD28 monoclonal antibodies and lipopolysaccharide, exhibiting half-maximal inhibitory concentration (IC50) values ranging from 6.13 ± 0.86 to 12.69 ± 1.31 µmol·L-1.


Assuntos
Hypericum , Camundongos , Animais , Estrutura Molecular , Floroglucinol/farmacologia
8.
J Cell Mol Med ; 28(8): 1-11, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526036

RESUMO

Dysregulated angiogenesis leads to neovascularization, which can promote or exacerbate various diseases. Previous studies have proved that NEDD4L plays an important role in hypertension and atherosclerosis. Hence, we hypothesized that NEDD4L may be a critical regulator of endothelial cell (EC) function. This study aimed to define the role of NEDD4L in regulating EC angiogenesis and elucidate their underlying mechanisms. Loss- and gain-of-function of NEDD4L detected the angiogenesis and mobility role in human umbilical vein endothelial cells (HUVECs) using Matrigel tube formation assay, cell proliferation and migration. Pharmacological pathway inhibitors and western blot were used to determine the underlying mechanism of NEDD4L-regulated endothelial functions. Knockdown of NEDD4L suppressed tube formation, cell proliferation and cell migration in HUVECs, whereas NEDD4L overexpression promoted these functions. Moreover, NEDD4L-regulated angiogenesis and cell progression are associated with the phosphorylation of Akt, Erk1/2 and eNOS and the expression of VEGFR2 and cyclin D1 and D3. Mechanically, further evidence was confirmed by using Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Overexpression NEDD4L-promoted angiogenesis, cell migration and cell proliferation were restrained by these inhibitors. In addition, overexpression NEDD4L-promoted cell cycle-related proteins cyclin D1 and D3 were also suppressed by Akt blocker MK-2206, Erk1/2 blocker U0126 and eNOS blocker L-NAME. Our results demonstrated a novel finding that NEDD4L promotes angiogenesis and cell progression by regulating the Akt/Erk/eNOS pathways.


Assuntos
Butadienos , Ciclina D1 , Nitrilas , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ciclina D1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NG-Nitroarginina Metil Éster , 60489 , Neovascularização Fisiológica/genética , Proliferação de Células , Movimento Celular/genética
10.
Int J Biol Macromol ; 265(Pt 1): 130790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484818

RESUMO

Phosphoramides, as a kind of high-efficient fire retardants, have been designed in many structures and endowed exceptional fire retardancy to polylactide (PLA). However, due to ignorance of the structure-property correlation, the effect of phosphoramides' structure on the fire retardancy and mechanical properties of PLA is still unclear. Herein, a series of biobased phosphoramides (phosphoramide (V1), linear polyphosphoramide (V2) and hyperbranched polyphosphamide (V3)) were designed and incorporated into PLA, and the structural effect of phosphoramides on the fire-retardant and mechanical properties of PLA was deeply researched. Among three kinds of phosphoramides, the hyperbranched polyphosphoramide is more effective than the corresponding linear polyphosphoramide and phosphoramide in improving the fire-retardant and anti-dripping properties of PLA, and only linear polyphosphoramide shows a positive effect in the mechanical strength of PLA. This work provides a feasible strategy for creating mechanically robust and fire-retardant polymer composites by molecularly tailoring the structure of fire retardants and uncovering their structure-property relationship.


Assuntos
Retardadores de Chama , Fosforamidas , Poliésteres
11.
J Gastrointest Oncol ; 15(1): 397-414, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482221

RESUMO

Background: Hepatocellular carcinoma (HCC) is a malignancy with a bleak prognosis. Although emerging research increasingly supports the involvement of chromatin regulators (CRs) in cancer development, CRs in HCC patients have not received proportionate attention. This study aimed to investigate the role and prognostic significance of CRs in HCC patients, providing new insights for clinical diagnosis and treatment strategies. Methods: We analyzed 424 samples in The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) data to identify key CR genes associated with HCC prognosis by differential expression and univariate Cox regression analyses. LASSO-multivariate Cox regression method was used for construction of a prognostic signature and development of a CR-related prognosis model. The prognosis capacity of the model was evaluated via Kaplan-Meier method. Relationship between the model and tumor microenvironment (TME) was evaluated. Additionally, clinical variables and the model were incorporated to create a nomogram. The role of the prognostic gene MRG-binding protein (MRGBP) in HCC was elucidated by immunohistochemistry and semiquantitative analysis. Results: A risk score model, comprising B-lymphoma Mo-MLV insertion region 1 (BMI1), chromobox 2 (CBX2), and MRGBP, was constructed. The area under the curve (AUC) of the CR-based signature is 0.698 (P<0.05), exhibiting robust predictive power. Functional and pathway analyses illuminated the biological relevance of these genes. Immune microenvironment analysis suggested potential implications for immunotherapy. Drug sensitivity analysis identified agents for targeted treatment. Clinical samples show that MRGBP is highly expressed in HCC tissues. Conclusions: This CR-based signature shows promise as a valuable prognostic tool for HCC patients. It demonstrates predictive capabilities, independence from other clinical factors, and potential clinical applicability. In addition, we need more experiments to validate our findings. These findings offer insights into HCC prognosis and treatment, with implications for personalized medicine and improved patient outcomes.

12.
Angew Chem Int Ed Engl ; 63(16): e202319936, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372428

RESUMO

Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.

13.
Microb Pathog ; 189: 106574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354990

RESUMO

Antibiotics play an important role in the treatment of infectious diseases. Long-term overuse or misuse of antibiotics, however, has triggered the global crisis of antibiotic resistance, bringing challenges to treating clinical infection. Bacteriophages (phages) are the viruses infecting bacterial cells. Due to high host specificity, high bactericidal activity, and good biosafety, phages have been used as natural alternative antibacterial agents to fight against multiple drug-resistant bacteria. Enterococcus faecalis is the main species detected in secondary persistent infection caused by failure of root canal therapy. Due to strong tolerance and the formation of biofilm, E. faecalis can survive the changes in pH, temperature, and osmotic pressure in the mouth and thus is one of the main causes of periapical lesions. This paper summarizes the advantages of phage therapy, its applications in treating oral diseases caused by E. faecalis infections, and the challenges it faces. It offers a new perspective on phage therapy in oral diseases.


Assuntos
Infecções Bacterianas , Bacteriófagos , Doenças da Boca , Terapia por Fagos , Humanos , Enterococcus faecalis , Antibacterianos/uso terapêutico
14.
Phys Rev Lett ; 132(5): 050402, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364141

RESUMO

The parity-time (PT) symmetry of a non-Hermitian Hamiltonian leads to real (complex) energy spectrum when the non-Hermiticity is below (above) a threshold. Recently, it has been demonstrated that the non-Hermitian skin effect generates a new type of PT symmetry, dubbed the non-Bloch PT symmetry, featuring unique properties such as high sensitivity to the boundary condition. Despite its relevance to a wide range of non-Hermitian lattice systems, a general theory is still lacking for this generic phenomenon even in one spatial dimension. Here, we uncover the geometric mechanism of non-Bloch PT symmetry and its breaking. We find that non-Bloch PT symmetry breaking occurs by the formation of cusps in the generalized Brillouin zone (GBZ). Based on this geometric understanding, we propose an exact formula that efficiently determines the breaking threshold. Moreover, we predict a new type of spectral singularities associated with the symmetry breaking, dubbed non-Bloch van Hove singularity, whose physical mechanism fundamentally differs from their Hermitian counterparts. This singularity is experimentally observable in linear responses.

15.
Clin Chim Acta ; 555: 117825, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331209

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) still has a high incidence of varying degrees of heart failure (HF). The aim of this study is to identify new molecular markers for predicting the severity of HF after AMI. METHODS: We analyzed demographic indicators, past medical history, clinical indicators, major adverse cardiac events (MACEs) and molecular markers in patients with different Killip classifications after AMI. Olink proteomics was used to explore new molecular markers for predicting different severity of HF after AMI. RESULTS: Neutrophil count was the independent risk factors for in-hospital MACEs. Nineteen differentially expressed proteins (DEPs) increased significantly with increasing Killip classification. Five DEPs were also found to have an AUC (95 % CI) value greater than 0.8: GDF-15, NT-pro BNP, TNF-R2, TNF-R1 and TFF3. CONCLUSIONS: Neutrophil count, GDF-15, TNF-R2, TNF-R1 and TFF3 were closely related to the Killip classification of HF after AMI, which suggests that the inflammatory response plays an important role in the severity of HF after AMI and that regulating inflammation might become a new target for controlling HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Fator 15 de Diferenciação de Crescimento , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral , Proteômica , Biomarcadores , Infarto do Miocárdio/diagnóstico , Insuficiência Cardíaca/diagnóstico
16.
Curr Oncol Rep ; 26(1): 21-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198112

RESUMO

PURPOSE OF REVIEW: In this narrative review, we discuss the optimal timing of immune checkpoint inhibitors (ICI) in early triple negative breast cancer (TNBC), the landscape of predictive biomarkers for the use of immunotherapy, and the mounting literature suggesting a benefit for an early use of ICI. RECENT FINDINGS: TNBC is associated with a poor prognosis relative to other breast cancer subtypes, and until recently, the treatment of TNBC was limited to cytotoxic chemotherapy. In 2021, the immune-checkpoint inhibitor, pembrolizumab, was approved in combination with neoadjuvant chemotherapy for patients with high-risk early stage TNBC. This approval changed the treatment paradigm of early TNBC concomitantly raised several challenges in clinical practice, pertaining to patient selection, toxicity management, and post-neoadjuvant treatment, among others. The introduction of neoadjuvant chemoimmunotherapy has transformed the treatment landscape for early TNBC. However, several challenges, including patient selection, toxicity management, and the identification of predictive biomarkers, need to be addressed. Future research should focus on refining the timing and duration of immunotherapy, optimizing the chemotherapy partner, and exploring novel predictive biomarkers of response or toxicity.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Biomarcadores Tumorais , Terapia Neoadjuvante , Imunoterapia
17.
Nature ; 626(7997): 86-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297172

RESUMO

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

18.
Adv Mater ; : e2312041, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38219020

RESUMO

The remarkable progress in perovskite solar cell (PSC) technology has witnessed a remarkable leap in efficiency within the past decade. As this technology continues to mature, flexible PSCs (F-PSCs) are emerging as pivotal components for a wide array of applications, spanning from powering portable electronics and wearable devices to integrating seamlessly into electronic textiles and large-scale industrial roofing. F-PSCs characterized by their lightweight, mechanical flexibility, and adaptability for cost-effective roll-to-roll manufacturing, hold immense commercial potential. However, the persistent concerns regarding the overall stability and mechanical robustness of these devices loom large. This comprehensive review delves into recent strides made in enhancing the mechanical stability of F-PSCs. It covers a spectrum of crucial aspects, encompassing perovskite material optimization, precise crystal grain regulation, film quality enhancement, strategic interface engineering, innovational developed flexible transparent electrodes, judicious substrate selection, and the integration of various functional layers. By collating and analyzing these dedicated research endeavors, this review illuminates the current landscape of progress in addressing the challenges surrounding mechanical stability. Furthermore, it provides valuable insights into the persistent obstacles and bottlenecks that demand attention and innovative solutions in the field of F-PSCs.

19.
Microb Pathog ; 186: 106471, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048838

RESUMO

Enterococcus faecalis, a conditional pathogenic bacterium, is prevalent in the intestinal, oral, and reproductive tracts of humans and animals, causing a variety of infectious diseases. E. faecalis is the main species detected in secondary persistent infection from root canal therapy failure. Due to the abuse of antibacterial agents, E. faecalis has evolved its resistant ability. Therefore, it is difficult to treat clinical diseases infected by E. faecalis. Exploring new alternative drugs for treating E. faecalis infection is urgent. We cloned and expressed the gene of phage holin, purified the recombinant protein, and analyzed the antibacterial activity, lysis profile, and ability to remove bacterial biofilm. It showed that the crude enzyme of phage holin pEF191 exhibited superior bacterial inhibiting activity and a broader lysis host range compared to the parent phage PEf771. In addition, pEF191 demonstrated high efficacy in eliminating E. faecalis biofilm. The therapeutic results of the Sprague-Dawley (SD) rats model infected showed that pEf191 did not affect SD rats, indicating that pEF191 provided greater protection against E. faecalis infection in SD rats. Based on the 16 S rDNA data of SD rats intestinal microorganism population, holin pEF191 exhibited no impact on the diversity of intestinal microorganisms at the phylum and genus levels and improved the relative abundance of favorable bacteria. Thus, pEF191 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.


Assuntos
Bacteriófagos , Ratos , Animais , Humanos , Bacteriófagos/genética , Enterococcus faecalis/genética , Ratos Sprague-Dawley , Antibacterianos/farmacologia , Biofilmes
20.
J Food Sci ; 89(1): 684-700, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010752

RESUMO

Date palm (Phoenix dactylifera L.) is an important commercial crop extensively consumed as a staple food and has been applied in many ethnomedical systems. Fruit vinegar is a preservative, condiment, and beverage with a spectrum of health benefits. Studies about the preparation, chemical profiles, and bioactivities of date fruit vinegar (DFV) are fundamental requirements for industrialization production. This study focused on the lab-scaled producing conditions, chemical profiles of DFV, and its bioactivities in vitro. According to the results, a date wine containing 9.75% methanol was obtained by yeast fermenting the enzyme-hydrolyzed date juice with 23.11% ± 0.39% of total sugar content. The optimized acidic fermentation conditions were an inoculation amount of 0.02%, a fermentation temperature of 31.14°C, and an initial alcohol content of 7.78%. Total acidity and total phenolic contents of the DFV were 7.74% ± 0.29% and 1.44 mg gallic acid equivalent/mL, respectively. In total, 32 organic acids were quantitated in the unaged DFV, with acetic, L-malic, and oxoglutaric acids as the predominant compounds. A total of 930 volatiles were identified in the DFV, including 186 esters, 177 terpenoids, and 148 heterocyclic compounds. There are 18 phenolic acids presented in the DFV. In addition, 42 flavonoids were quantitated in the DFV, including catechin, taxifolin, and cynaroside. The results of free radical scavenging activities and reducing power demonstrated that the DFV displayed good antioxidant properties. The DFV also acted well on angiotensin-converting enzyme 2 inhibition. These results suggest that the DFV can be industrially developed as a dietary supplement.


Assuntos
Antioxidantes , Phoeniceae , Antioxidantes/química , Ácido Acético/análise , Enzima de Conversão de Angiotensina 2/análise , Flavonoides/análise , Frutas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...